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Abstract

The refined stability analysis of the virtual boundary method proposed by Goldstein et al. (1994) and modified by

Saiki and Biringen (1996) is carried out for applications to three-dimensional turbulent flows in complex geometry. The

precise stability boundaries in the forcing parameter space for various time-advancing schemes are provided under the

assumption that the virtual boundary points are densely distributed. From these and the relevant investigation of

frequency of the forced system, the optimum gains of the feedback forcing are suggested. Stability regimes of the

Runge–Kutta schemes of various order are much wider than those of the Adams–Bashforth schemes. Specially, the

third-order Runge–Kutta scheme allows the use of an order-one CFL number in the integration of the feedback forcing,

rendering the method applicable to turbulent flows with complex boundaries. The three-dimensional turbulent flow

caused by a surface-mounted box was simulated using a spectral method for evaluation, confirming the stability limit

proposed by theoretical estimate. The method was then applied to simulations of the flow around an impulsively

starting cylinder and of the rough-wall turbulent boundary layer flow.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

An immersed boundary method was first proposed by Peskin [16] for the purpose of calculation of flows

inside a moving heart. Independently, Goldstein et al. [5,6] developed a virtual boundary method that

employs a feedback forcing to impose the no-slip condition at immersed boundaries present in the fluid

domain. These two methods are virtually the same when applied to flow with immersed stationary walls.

Saiki and Biringen [18] modified the virtual boundary technique and proposed the so-called �area-weighted�
virtual boundary method. There have been several applications of the virtual boundary method
[4,6,7,11,19] and it has been reported that the method suffers from a very strict time-step restriction since
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the amplitude of the feedback forcing needs to be large for proper operation, resulting in a very stiff system.

Very small CFL numbers (of order of 10�2) were reported in various cases, making the method unat-

tractive.

For a remedy of this problem, an alternative approach was proposed by Fadlun et al. [4]. Instead of

using a feedback forcing with arbitrary gains, the proposed method uses a direct forcing at particular

meshes such that in one time step, the method enforces the no-slip condition at the desired immersed

boundary points locating between the computational meshes. They claimed that there is no parameter to

optimize and the method does not suffer from any time-step restriction. Kim et al. [8] modified this method
by adding a mass source to satisfy the local continuity near immersed boundary points. The performance of

this method, however, heavily depends on the choice of immersed boundary points where the no-slip

condition is imposed and the involved interpolation scheme. Applications of the method in three-dimen-

sional cases become extremely complicated, thus most examples have two-dimensional or axisymmetric

boundaries [4,8]. Furthermore, the stability characteristics of the method is not well understood. In some

case, the method employing a linear interpolation fails to produce a stable solution [8].

For the sharp representation of immersed boundaries, a Cartesian grid method employing a second-order

interpolation was proposed based on finite-volume approach [21,23]. Another approach by Leveque and Li
[12] and Li and Lai [13] is to formulate the jump conditions across an immersed surface where the forcing is

localized. Applications of these approaches, however, are mainly restricted to two-dimensional cases.

In the present study, we investigate the stability characteristics of the virtual boundary method that was

proposed by Goldstein et al. [5] and later modified by Saiki and Biringen [18]. The reason we chose this

approach is that an application of this method in three-dimensional cases is straightforward and stable

performance is guaranteed as long as the time-step restriction is satisfied. For example, the stability limit for

the time step for the second-order Adams–Bashforth scheme was already rigorously provided by Goldstein

et al. [5], which is

Dt <
�b � ðb2 � 2akÞ1=2

a
; ð1Þ

where a and b are the negative gains of a virtual forcing added to the momentum equations,

FiðtÞ ¼ a
Z t

Uiðt0Þdt0 þ bUiðtÞ; ð2Þ

where UiðtÞ is the fluid velocity at virtual boundary points. k in Eq. (1) is a problem-dependent constant of

order one. However, in Goldstein et al. [5]�s applications, virtual boundary points coincide with the com-

putational mesh points. In the later application to flow over a cylinder by Saiki and Biringen [18], similar

stability characteristics was observed although they employed an interpolation scheme to compute the
forcing at virtual boundary points not coinciding with the mesh points. Obviously, the stability limit is de-

pendent on the adopted scheme. Exact stability limit of the method for a particular scheme is very important

in three-dimensional applications, especially when turbulent flow is considered. The role of the a-term in the

forcing is to add a natural oscillation in the course of enforcing the no-slip condition at a virtual boundary

while the b-term adds a damping to the system, thus suppresses the oscillation. Therefore, generally we expect

better performance of the virtual forcing with as large values of a and b as allowed by the stability limit. Rapid

performance of the forcing becomes critical when the flow under consideration is turbulent since turbulence

contains motions of a wide range of timescales down to the order of the Kolmogorov timescale.
As pointed out by Goldstein et al. [5], the stability of the method is determined not only by a and b but

also by flow geometry. For this reason, no general rule for determination of the optimum values of a and b
has been proposed. It is thus, necessary to derive a guideline for selecting a and b in using various schemes

and the corresponding stability limit.
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The aim of the present paper is to provide the accurate stability limits and to suggest the optimum values

of the forcing gains for various temporal schemes in three-dimensional applications of a virtual boundary

method.

2. Virtual boundary method

In this section, we briefly explain the virtual boundary method in three-dimensional applications. In-
cluding the virtual forcing term, the Navier–Stokes Equations read

oui
ot

þ uj
oui
oxj

¼ � 1

q
op
oxi

þ m
o2ui
oxjoxj

þ Fi; ð3Þ

where ui, q, p and m are the velocity component, density, pressure and viscosity of fluid. Fi is the virtual

forcing located along virtual surface points Xj as given by Eq. (2) where the virtual surface velocity UiðtÞ is
the fluid velocity at the virtual boundary point,

UiðtÞ ¼ uiðX1;X2;X3; tÞ: ð4Þ
Through this dynamical procedure, it is expected that the velocities at the virtual boundaries quickly decay

to zero when a and b are large enough. For an implementation of this method in numerical simulations, two
approximation processes are necessary since generally the virtual boundary does not coincide with the

computational meshes and the delta-function forcing is not directly realizable in the discrete mesh system.

The first approximation occurs when the velocity at the immersed boundary point is extracted through

interpolation using the velocities at the nearby mesh points. In the present study, the linear interpolation in

three dimensions is adopted. Velocity at an immersed boundary point, therefore, can be written as a linear

combination of velocities at nearby 8 mesh points,

UiðtÞ ¼
X8
j¼1

Wjui;jðtÞ; ð5Þ

where numbering of the mesh velocities and weights is shown in Fig. 1. The corresponding weight values are

W1 ¼ ð1� gxÞð1� gyÞð1� gzÞ;
W2 ¼ gxð1� gyÞð1� gzÞ;
W3 ¼ ð1� gxÞð1� gyÞgz;

W4 ¼ gxð1� gyÞgz;

W5 ¼ ð1� gxÞgyð1� gzÞ;
W6 ¼ gxgyð1� gzÞ;
W7 ¼ ð1� gxÞgygz;

W8 ¼ gxgygz;

ð6Þ

respectively, where gx, gy and gz are defined in the figure. Then the virtual forcing is obtained using (2). For
much higher-order approximation, a higher-order interpolation such as cubic spline or the Hermite in-

terpolation can be employed.

The second approximation occurs when this virtual forcing is spread back to the nearby mesh points for

numerical simulation. When the same weights (6) are used in this procedure,

fi;j ¼
1

Ns

XNs

k¼1

Wj;kFiðX;k; tÞ; ð7Þ
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where Ns is the number of the total virtual surface points that influence the mesh point. This is a gen-

eralization of the �area-weighted� virtual boundary method of Saiki and Biringen [18] to three dimensions.

This �volume-weighted� implementation of the virtual surface forcing appears reasonable since the method

collects contributions from all the nearby virtual boundary points. Furthermore, it allows us to analyze

the stability characteristics as will be shown in the next section. This also makes the method distinct from

the alternative approach by Fadlun et al. [4] where they enforces the no-slip condition at few selected
points.

3. Stability analysis

In this section, the refined stability analysis of the virtual boundary method introduced in the previous

section is presented. First, we consider a one-dimensional case before generalization to multi-dimensional

problems to understand how the method works although it is hypothetical. As shown in Fig. 2, an im-
mersed boundary point is located at x1 þ gðx2 � x1Þ between two mesh points, x1 and x2. Then the velocity at

the immersed point, UðtÞ, can be approximated by the linear interpolation,

UðtÞ ¼ ð1� gÞu1ðtÞ þ gu2ðtÞ; ð8Þ

where u1ðtÞ and u2ðtÞ are velocities at the mesh points. The virtual forcing becomes

F ðtÞ ¼ a
Z t

Uðt0Þdt0 þ bUðtÞ; ð9Þ

Fig. 2. Schematic showing interpolation and spreading in one dimension.

Fig. 1. Numbering of nearby mesh points of a virtual boundary point in three dimensions.
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and this forcing is spread back to the nearby two mesh points using the same weights as used in the in-

terpolation procedure as follows:

f1ðtÞ ¼ ð1� gÞF ðtÞ; ð10Þ

f2ðtÞ ¼ gF ðtÞ; ð11Þ

where no summation is necessary since only one immersed point is considered. The evolution equations for

u1ðtÞ and u2ðtÞ are

du1ðtÞ
dt

¼ ð1� gÞ2 a
Z t

u1ðt0Þdt0
�

þ bu1ðtÞ
�
þ gð1� gÞ a

Z t

u2ðt0Þdt0
�

þ bu2ðtÞ
�
; ð12Þ

du2ðtÞ
dt

¼ gð1� gÞ a
Z t

u1ðt0Þdt0
�

þ bu1ðtÞ
�
þ g2 a

Z t

u2ðt0Þdt0
�

þ bu2ðtÞ
�
: ð13Þ

For these coupled linear integro-differential equations, two eigenvalues exist: One of them is null and the

other is ð1� gÞ2 þ g2. The corresponding non-trivial eigenvector turns out to be UðtÞð¼ ð1� gÞu1ðtÞþ
gu2ðtÞÞ that is the very velocity at the virtual boundary point. Therefore,

dUðtÞ
dt

¼ ðð1� gÞ2 þ g2Þ a
Z t

Uðt0Þdt0
�

þ bUðtÞ
�
: ð14Þ

This dynamical system with negative values of a and b has a solution converging to 0. The rate at which
UðtÞ decays, however, is slower than originally expected due to the prefactor, ð1� gÞ2 þ g2 which ranges

between 1/2 and 1 depending on the location of the virtual boundary point. However, stability analysis for

this system, if needed, should be carried out with the prefactor equal to 1, since the worst case should be

considered. This corresponds to the case where the virtual point approaches to either mesh points, i.e.,

g ! 1 or g ! 0. This implies that the stability of the method is determined by the virtual boundary point

closest to the mesh point.

Next, we extend this analysis to the two-dimensional cases. Virtual points are now distributed along a

virtual boundary as shown in Fig. 3. Velocity at the kth virtual boundary point can be approximated as
follows when the bilinear interpolation scheme is used.

UkðtÞ ¼ ð1� gx;kÞð1� gy;kÞu1ðtÞ þ gx;kð1� gy;kÞu2ðtÞ þ ð1� gx;kÞgy;ku3ðtÞ þ gx;kgy;ku4ðtÞ; ð15Þ

Fig. 3. Virtual boundary velocity and forcing in two dimensions.
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where gx;k and gy;k are defined in the figure. The virtual forcing at the point then becomes

FkðtÞ ¼ a
Z t

Ukðt0Þdt0 þ bUkðtÞ: ð16Þ

Rearrangement for the mesh velocities with the area-weighted spreading of the forcing yields

du1ðtÞ
dt

du2ðtÞ
dt

du3ðtÞ
dt

du4ðtÞ
dt

0
BBB@

1
CCCA ¼

p1 p2 p3 p4
p2 p5 p4 p6
p3 p4 p7 p8
p4 p6 p8 p9

0
BB@

1
CCA

a
R t u1ðt0Þdt0 þ bu1ðtÞ

a
R t u2ðt0Þdt0 þ bu2ðtÞ

a
R t u3ðt0Þdt0 þ bu3ðtÞ

a
R t u4ðt0Þdt0 þ bu4ðtÞ

0
BBB@

1
CCCA; ð17Þ

where

p1 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2ð1� gy;kÞ

2
; ð18Þ

p2 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞð1� gy;kÞ
2
; ð19Þ

p3 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2gy;kð1� gy;kÞ; ð20Þ

p4 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞgy;kð1� gy;kÞ; ð21Þ

p5 ¼
1

Ns

XNs

k

g2
x;kð1� gy;kÞ

2
; ð22Þ

p6 ¼
1

Ns

XNs

k

g2
x;kgy;kð1� gy;kÞ; ð23Þ

p7 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2g2

y;k; ð24Þ

p8 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞg2
y;k; ð25Þ

p9 ¼
1

Ns

XNs

k

g2
x;kg

2
y;k: ð26Þ

The worst case from the stability point of view occurs when gx;k ! 0 for all k or gy;k ! 0 for all k, but not
simultaneously. This corresponds to the case where the virtual boundary coincides with the mesh line el-

ement and the problem degenerates to the one-dimensional case with virtual boundary points distributed
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between two mesh points. In other words, the maximum eigenvalue among all possible situations can be

observed when this case happens. Then the system is simplified. For example, when gx;k ¼ 0 for all k,
p2 ¼ p4 ¼ p5 ¼ p6 ¼ p8 ¼ p9 ¼ 0 and p1, p3, p7 can be well approximated by integrals as follows assuming

that the virtual boundary points are densely and uniformly distributed.

p1 ’
Z 1

0

ð1� gyÞ
2
dgy ¼

1

3
; ð27Þ

p3 ’
Z 1

0

gyð1� gyÞdgy ¼
1

6
; ð28Þ

p7 ’
Z 1

0

g2
y dgy ¼

1

3
: ð29Þ

The system (Eq. (17)) is then reduced to

du1ðtÞ
dt

du3ðtÞ
dt

 !
¼

1
3

1
6

1
6

1
3

� �
a
R t u1ðt0Þdt0 þ bu1ðtÞ

a
R t u3ðt0Þdt0 þ bu3ðtÞ

� �
: ð30Þ

Eigenvalues for this coupled system are 1/2 and 1/6. Then the resulting diagonalized system is

du	
1
ðtÞ

dt
du	

3
ðtÞ

dt

 !
¼

1
2

0

0 1
6

� �
a
R t u	1ðt0Þdt0 þ bu	1ðtÞ

a
R t u	3ðt0Þdt0 þ bu	3ðtÞ

� �
; ð31Þ

with u	1ðtÞ ¼ u1ðtÞ þ u3ðtÞ and u	3ðtÞ ¼ u1ðtÞ � u3ðtÞ. The first equation of Eq. (31) should be investigated for

stability since it corresponds to the equation for the most dangerous mode with the largest eigenvalue. It is

interesting to note that the average of the two mesh velocities approaches zero three times faster than the
difference between them although both of them eventually decay to zero. We notice that the prefactor 1/2 of

the first mode comes from the combination of the two processes, interpolation and spreading.

For stability analysis of the virtual boundary method in three dimensions, the above analysis is now

extended to three-dimensional virtual boundaries. A virtual surface is approximated by distributed virtual

points (see Fig. 1 for notations for nearby meshes of one virtual point). The resulting expression for the

reduced dynamical system is

du1ðtÞ
dt

du3ðtÞ
dt

du5ðtÞ
dt

du7ðtÞ
dt

0
BBB@

1
CCCA ¼

1
9

1
18

1
18

1
36

1
18

1
9

1
36

1
18

1
18

1
36

1
9

1
18

1
36

1
18

1
18

1
9

0
BB@

1
CCA

a
R t u1ðt0Þdt0 þ bu1ðtÞ

a
R t u3ðt0Þdt0 þ bu3ðtÞ

a
R t u5ðt0Þdt0 þ bu5ðtÞ

a
R t u7ðt0Þdt0 þ bu7ðtÞ

0
BBB@

1
CCCA; ð32Þ

where u1ðtÞ, u3ðtÞ, u5ðtÞ and u7ðtÞ are function values at the nearby meshes (see Fig. 1). Detailed derivation

of Eq. (32) is provided in the Appendix A. Here, gx;k ! 0 for all k, corresponding to the case where the
virtual surface coincides with a mesh area element. Eigenvalues for this system are ð1=4; 1=12; 1=12; 1=36Þ
and the corresponding diagonal system is

du	
1
ðtÞ

dt
du	

3
ðtÞ

dt
du	

5
ðtÞ

dt
du	

7
ðtÞ

dt

0
BBBB@

1
CCCCA ¼

1
4

0 0 0

0 1
12

0 0
0 0 1

12
0

0 0 0 1
36

0
BB@

1
CCA

a
R t u	1ðt0Þdt0 þ bu	1ðtÞ

a
R t u	3ðt0Þdt0 þ bu	3ðtÞ

a
R t u	5ðt0Þdt0 þ bu	5ðtÞ

a
R t u	7ðt0Þdt0 þ bu	7ðtÞ

0
BBB@

1
CCCA; ð33Þ
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with the eigenvector relations,

u	1ðtÞ
u	3ðtÞ
u	5ðtÞ
u	7ðtÞ

0
BB@

1
CCA ¼

1 1 1 1

0 �1 1 0

�1 0 0 1
1 �1 �1 1

0
BB@

1
CCA

u1ðtÞ
u3ðtÞ
u5ðtÞ
u7ðtÞ

0
BB@

1
CCA: ð34Þ

The first equation of Eq. (33), which has the largest eigenvalue, should be investigated for stability. As in

two dimensions, the average of the four mesh velocities decays to zero faster than any other mode.

Therefore, from the relations (Eqs. (14), (31), (33)), the equation that is subject to stability analysis is

du	ðtÞ
dt

¼ 1

2D�1
a
Z t

u	ðt0Þdt0
�

þ bu	ðtÞ
�
; ð35Þ

where D denotes dimension and u	ðtÞ is the most dangerous mode. The factor of 1=2D�1 can cause four-

times larger stability regime in the forcing parameter space than when not considered in three dimensions.

By considering the worst case in the derivation of the virtual dynamical system with approximations of the
involved summation, we could eliminate the problem-dependent property of the system. Here, the major

assumption in our analysis is that the virtual boundary points are densely distributed, which replaces the

summation by integration. However, it should be reminded that this analysis is possible only when the

linear interpolation is used in obtaining the virtual velocity and the same weights are used in the volume-

weighted spreading of the delta-function forcing. When a higher-order interpolation scheme is adopted, a

larger value of the prefactor is expected since a high-order interpolation usually involves more nearby

weights of larger magnitude than the linear interpolation. This implies more severe stability limit. A high-

order interpolation, however, does not guarantee improvement of the accuracy of the method since then the
accuracy of the virtual boundary method depends dominantly on the approximation scheme used in

spreading the delta-function forcing.

We now investigate the stability characteristics of Eq. (35) for various time advancing schemes. When

the forward Euler method is adopted for temporal integration, the discretized form of Eq. (35) is

unþ1 � un ¼ a0
Z tnþ1

0

uðt0Þdt0 þ b0un; ð36Þ

where un ¼ uðnDtÞ with the time step Dt and a0 ¼ aDt2=2D�1, b0 ¼ bDt=2D�1, respectively. Note that the

integral interval is up to tnþ1, not tn, implying an implicit treatment. The integral is calculated byZ tnþ1

0

uðt0Þdt0 ¼ ðu0 þ u1 þ 
 
 
 þ unÞDt ð37Þ

which is just an explicit treatment of the integral since unþ1 is not available. The other possible discretization

can be obtained by carrying out the integration up to tn. The stability characteristics for these two choices
are basically the same under a transformation of the coefficients, a00 ¼ a0 and b00 ¼ a0 þ b0, where a00 and b00

are coefficients for the second choice, i.e., integration up to tn. Therefore, we will consider only the first

choice in stability analysis. To obtain the recurrence formula for stability analysis, the discretized Eq. (36)

at the previous time step is subtracted from Eq. (36) to yield

unþ1 � 2un þ un�1 ¼ a0un þ b0ðun � un�1Þ: ð38Þ

Stability of this scheme can be determined by the behavior of rð� unþ1=unÞ. To obtain r, un ¼ u0rn is

substituted into Eq. (38), resulting in,

r2 � ð2þ a0 þ b0Þr þ 1þ b0 ¼ 0: ð39Þ
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The stability condition that absðrÞ6 1 yields

�a0 � 2b0
6 4; ð40Þ

or,

� aDt2

2D�1
� 2bDt

2D�1
6 4; ð41Þ

limiting the magnitudes of a and b together.

For the second-order Adams–Bashforth scheme, the discretized equation becomes

unþ1 � un ¼
3

2
ða0ðu0 þ u1 þ 
 
 
 þ unÞ þ b0unÞ �

1

2
ða0ðu0 þ u1 þ 
 
 
 þ un�1Þ þ b0un�1Þ; ð42Þ

where the same formula for the integral term as in the forward Euler scheme is used. The characteristic

equation determining r for this scheme is

r3 � 2

�
þ 3

2
a0 þ 3

2
b0
�
r2 þ 1

�
þ 1

2
a0 þ 2b0

�
r � 1

2
b0 ¼ 0: ð43Þ

Stability condition then yields

� aDt2

2D�1
� 2bDt

2D�1
6 2: ð44Þ

This is the same relation as Eq. (1) with k equal to 2D�1, thus eliminating problem dependency. It should be
noted that stable region for the second-order Adams–Bashforth scheme is narrower than that of the for-

ward Euler scheme, which is a general trend in stability analysis.

Similarly, for the third-order Adams–Bashforth scheme the discretized form of the governing equation is

unþ1 � un ¼
23

12
ða0ðu0 þ u1 þ 
 
 
 þ unÞ þ b0unÞ �

16

12
ða0ðu0 þ u1 þ 
 
 
 þ un�1Þ þ b0un�1Þ

þ 5

12
ða0ðu0 þ u1 þ 
 
 
 þ un�2Þ þ b0un�2Þ; ð45Þ

and the corresponding characteristic equation is

r4 � 2

�
þ 23

12
a0 þ 23

12
b0
�
r3 þ 1

�
þ 16

12
a0 þ 39

12
b0
�
r2 � 5

12
a0

�
þ 21

12
b0
�
r þ 5

12
b0 ¼ 0; ð46Þ

from which the stability condition enforces

� aDt2

2D�1
� 2bDt

2D�1
6

12

11
; ð47Þ

showing much narrow stability range than that of the second-order Adams–Bashforth scheme.

The stability characteristics for the family of Runge–Kutta scheme can be investigated in a similar

manner. For a second-order Runge–Kutta scheme called the Modified Euler scheme, the equations for the

two-step discretization are

unþ1=2 � un ¼
1

2

a0

Dt

Z tnþ1=2

0

uðt0Þdt0
�

þ b0un

�
; ð48Þ
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unþ1 � unþ1=2 ¼
a0

Dt

Z tnþ1

0

uðt0Þdt0
�

þ b0unþ1=2

�
� 1

2

a0

Dt

Z tnþ1=2

0

uðt0Þdt0
�

þ b0un

�
; ð49Þ

with unþ1=2 denoting the function value at the intermediate step. Subtracting the same equations at the

previous time step from the above equations yields

unþ1=2 � un�1=2 � un þ un�1 ¼
1

2
a0I1
�

þ b0ðun � un�1Þ
�
; ð50Þ

unþ1 � un � unþ1=2 þ un�1=2 ¼ a0I2
�

þ b0ðunþ1=2 � un�1=2Þ
�
� 1

2
a0I1
�

þ b0ðun � un�1Þ
�
; ð51Þ

where the integrals can be calculated as follows:

I1 ¼
1

Dt

Z tnþ1=2

tn�1=2

uðt0Þdt0 ¼ 1

2
ðun�1=2 þ unÞ; ð52Þ

I2 ¼
1

Dt

Z tnþ1

tn

uðt0Þdt0 ¼ 1

2
ðun þ unþ1=2Þ: ð53Þ

Substituting un ¼ rn and unþ1=2 ¼ prn into the Eqs. (50) and (51) and rearranging yield

ðp � 1Þðr � 1Þ ¼ 1

4
a0ðp þ rÞ þ 1

2
b0ðr � 1Þ; ð54Þ

ðr � 1Þ2 ¼ 1

2
a0ðp þ 1Þr þ b0ðr � 1Þp: ð55Þ

Solving for r and p and using the condition that absðrÞ6 1, we can obtain the following stability condition:

� aDt2

2D�1
� 4bDt

2D�1
6 8: ð56Þ

For another version of the second-order Runge–Kutta scheme which is known as the Heun�s scheme, a
little different stability regime is obtained. The discretized equations for this scheme are

unþ1=2 � un ¼
a0

Dt

Z tnþ1=2

0

uðt0Þdt0
�

þ b0un

�
; ð57Þ

unþ1 � unþ1=2 ¼
1

2

a0

Dt

Z tnþ1

0

uðt0Þdt0
�

þ b0unþ1=2

�
� 1

2

a0

Dt

Z tnþ1=2

0

uðt0Þdt0
�

þ b0un

�
; ð58Þ

and the resulting stability criterion is

� aDt2

2D�1
� bDt
2D�1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

bDt
2D�1

� ðbDt
2D�1

Þ2
r

6 6; ð59Þ

showing narrower region than that of the modified Euler scheme.

Finally, for the third-order low-storage Runge–Kutta scheme, the discretized equations for the three
substeps are

unþ1=3 � un ¼
8

15

a0

Dt

Z tnþ1=3

0

uðt0Þdt0
�

þ b0un

�
; ð60Þ

568 C. Lee / Journal of Computational Physics 184 (2003) 559–591



unþ2=3 � unþ1=3 ¼
5

12

a0

Dt

Z tnþ2=3

0

uðt0Þdt0
�

þ b0unþ1=3

�
� 17

60

a0

Dt

Z tnþ1=3

0

uðt0Þdt0
�

þ b0un

�
; ð61Þ

unþ1 � unþ2=3 ¼
3

4

a0

Dt

Z tnþ1

0

uðt0Þdt0
�

þ b0unþ2=3

�
� 5

12

a0

Dt

Z tnþ2=3

0

uðt0Þdt0
�

þ b0unþ1=3

�
; ð62Þ

where unþ1=3 and unþ2=3 denote the function values at the first and second substeps, respectively.

tnþ1=3 ¼ tn þ 8
15
Dt, tnþ2=3 ¼ tn þ 2

3
Dt. Detailed stability analysis can be found in the Appendix B. Since the

resulting stability criterion is too complicated to be explicitly expressed, we demonstrate it in Fig. 4 along

with stability regimes for other schemes. Compared to the forward Euler or the second-order/third-order

Fig. 4. Stability regimes for several time-advancing schemes: FE denotes the forward Euler scheme; AB2/AB3, the second-order/third-

order Adams–Bashforth scheme; RK2a, the second-order Runge–Kutta scheme (modified Euler scheme); RK2b, the second-order

Runge–Kutta scheme (Heun�s scheme); RK3, the third-order Runge–Kutta scheme. The dot/cross denotes stable/unstable cases ob-

tained in an application of the virtual boundary method to turbulent channel flow containing a box on the bottom.
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Adams–Bashforth schemes, the stability regimes of the Runge–Kutta schemes are much wider. Among

them, the third-order Runge–Kutta scheme possesses the widest stability range. Specially, the stability

range for the third-order Runge–Kutta scheme is about 10 times wider in �aDt2 direction than that of the

second-order Adams–Bashforth scheme which is one of the most popular schemes. Since the larger �aDt2,
the better the virtual dynamical system performs as will be shown in the next section, the third-order

Runge–Kutta scheme is recommended for implementations of the virtual boundary method.

For the third-order Runge–Kutta scheme, it can be observed that there is an unstable region inside the

stable regime near the �aDt2 axis. We draw a parabola which is tangential to that unstable region as shown
in Fig. 4. The narrow region surrounded by a portion of this parabola, two neutral stability curves and the

�aDt2 axis is practically unreachable when the constant CFL condition is used since the time step can

decrease in the course of computation, implying moving along a parabola, �aDt2 ¼ �a=b2ð�bDtÞ2, into the

unstable region for the given values of a and b. When the constant time-step condition is used, however,

this region can be taken advantage of.

The dot/cross symbols denote actual cases that show stable/unstable performances in applications to a

direct numerical simulation of turbulent channel flow containing a box on the bottom wall using the third-

order Runge–Kutta scheme and the constant CFL condition (see the next section). Since the time step
varies during computation, the maximum time step was used. Since our stability analysis is based on the

worst case scenario, i.e., the virtual surface coincides with the computational mesh area element, the current

case shows a little wider stable regime. Overall, an agreement between the theoretical estimate and nu-

merical result is excellent.

Finally we need to mention about the use of an implicit scheme in the integration of the virtual forcing

although a real implementation becomes very complicated due to the interpolation and redistribution

processes. For example, when the backward Euler scheme is used, the discretized equation becomes

unþ1 � un ¼ a0ðu0 þ u1 þ 
 
 
 þ unÞ þ b0unþ1; ð63Þ

where the integral is treated explicitly since an implicit treatment would be equivalent to a modification of

b0. The characteristic equation then becomes

ð1� b0Þr2 � ð1þ a0 � b0Þr þ 1 ¼ 0; ð64Þ

from which the condition, absðrÞ6 1, yields

� aDt2

2D�1
þ 2bDt

2D�1
6 4; ð65Þ

indicating that �bDt has no bound while �aDt2 has the same bound as the forward Euler scheme. As will be

shown in the next section, however, the performance of the scheme depends more sensitively on a than on b.
The bigger �a and the smaller �b, the better the performance is. Therefore, just an implicit treatment of the
b-term does not allow the use of a bigger time step than an explicit treatment. Thus, for the best perfor-

mance, an implicit scheme has the same time-step restriction as the explicit scheme. This appears opposite

to the finding of Fadlun et al. [4] that an implicit treatment of the b-term substantially increases the allowed

CFL number. It, however, is not clear whether they select the optimal values of a and b such that the

scheme performs the best.

4. Illustrative examples

For evaluation of the virtual boundary method and the corresponding stability, three cases are con-

sidered: a direct numerical simulation of the three-dimensional turbulent channel flow with a surface-
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mounted box; two-dimensional startup flow around a cylinder; a direct numerical simulation of turbulent

boundary layer over a rough wall.

4.1. Three-dimensional turbulent channel flow with a surface-mounted box

Stability of the virtual boundary method is investigated by applying the method to a direct numerical

simulation of the three-dimensional turbulent flow arising from a surface-mounted box. Before turning on

the forcing, the channel flow is fully developed at Resð¼ ush=mÞ ¼ 100, where us, h and m are the wall-shear

velocity, the channel half gap and the viscosity of fluid, respectively. A spectral simulation is carried out

with Fourier expansions in the streamwise (x�) and spanwise (z�) directions and a Chebyshev expansion in

the wall-normal (y�) direction. The size of the channel is ð4p; 2; 4p=3Þh and the resolution is 48� 65� 48 in

ðx�; y�; z�Þ directions, which is an extended grid owing to the 3/2 dealiasing in ðx�; z�Þ directions. Un-
dersirable oscillations have been reported in spectral calculations with an almost delta-function like forcing

in the previous studies [5,18]. We observed similar non-growing oscillations specially in the wall-normal

direction, but they did not influence the stability or the convergence of the virtual boundary method. The

third-order Runge–Kutta scheme and the Crank–Nicolson scheme are adopted for the integrations of the

non-linear terms including the virtual boundary forcing and the viscous terms, respectively. Details can be

found in Lundbladh et al. [14]. The integral term in the forcing is integrated according to the formulation

explained in the previous section. The dimension of the box is ð1:0; 0:2; 0:5Þh which is mounted in the center

of the bottom wall.
Three different number of the virtual surface points were tested to investigated the sensitivity of the result

to the configuration. On each surface of the box, 20� 20, 40� 40 and 80� 80 virtual points are uniformly

distributed. These correspond to 1961, 7921 and 31 841 points in total, respectively. For quantitative

comparison, an l2-norm error defined as follows is monitored,

l2-norm error �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

XNs

k¼1

UðXk; tÞ2
vuut ; ð66Þ

where UðXk; tÞ is the surface velocity at the kth surface point. The l2-norm errors for the three cases are

illustrated in Fig. 5. It shows that when the number is large enough, the behavior of the error is almost the

same whereas too small number of the virtual points leads to instability. Our stability analysis was based on

the assumption that the virtual points are densely distributed, thus stability is not guaranteed when the

number of the virtual points is not large. Therefore, in all following examples we distributed as many points

as possible to take advantage of the precise stability characteristics as long as the computational overhead is

not severe. This is one drawback of the current method that potential users should be careful about.

The behavior of the error of the streamwise component of the virtual velocity is shown in Fig. 6 for three
different forcing gain values. The time step is determined to satisfy the constant CFL-number condition

with the maximum CFL number equal to 1.0. Although these three cases are marginal in the stability

diagram (Fig. 4), the errors show a distinct feature: the larger �aDt2max, the smaller value the error converges

to, while �bDtmax influences only the initial behavior of the error, i.e., the larger �bDtmax, the faster the

error decays. Therefore, the a-term plays the more important role in enforcing the no-slip condition than

the b-term. It should be noted that although an order-one CFL number is maintained in the computation,

the error decreases to the level of 1/1000 of the initial value for the best case. The error, however, does not

decrease any further due to the dynamic nature of turbulence.
To further examine the roles of the parameters, the Eq. (35) is differentiated with respect to time to yield

d2u
dt2

� b
2D�1

du
dt

� a
2D�1

u ¼ 0: ð67Þ
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Since a and b are negative, the above equation represents a damped oscillatory system. For this system, the

natural frequency normalized by the time step can be easily obtained.

xnDt ¼
1

2D�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aDt2 � b2Dt2

4

s
: ð68Þ

For a virtual boundary method to perform properly, this frequency should be as large as possible.

Otherwise, the virtual dynamical system cannot track the changing flow. A large frequency obviously

means large �aDt2 and small �bDt. Therefore, we conclude that for the best performance, a and b should

be selected for given Dt so as to maximize this natural frequency within the stability limit. The recom-

mended values for a and b which maximize the natural frequency for various time-advancing schemes are

listed in Table 1 along with the corresponding natural frequencies. The natural frequencies of the third-
order Runge–Kutta scheme is of order of 2, which are much larger than those of the Adams–Bashforth

schemes. It means that with the optimal gains the virtual forcing works much faster than the flow evolves.

Our simulation result in turbulent flow as shown in Fig. 6 supports this analysis. Note that for most

schemes, the recommended value of b is zero. In real practice, however, a non-zero but small value of

b might be helpful in the initial period for the better initial performance. It should be noted that the

Fig. 5. l2-norm error of the virtual boundary velocity in the streamwise direction normalized by the initial value for three different

numbers of virtual points: thick-solid line, Np ¼ 31841; thin-solid line, Np ¼ 7921; dashed line, Np ¼ 1961. �aDt2max ¼ 40, �bDtmax ¼ 4

in all cases.
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magnitude of the recommended and tested gains ðjaDt2j; jbDtjÞ is much larger than those used by the

previous calculations [5,6,18,19].

As is shown in Fig. 7, the maximum CFL number also sets the converged error level. Although a smaller

CFL number yields smaller error, an order of one CFL number appears enough for the approximation of
the no-slip condition. Note that even when the maximum CFL number is 1.0, the error decreases below to

1/100th level of the initial value. This result serves as evidence that the virtual boundary method does not

impose an extra time-step restriction other than the order-one maximum CFL number condition. This is

Fig. 6. l2-norm error of the virtual surface velocity in the streamwise direction normalized by the initial value for three different forcing

gains: thick-solid line, �aDt2max ¼ 65, �bDtmax ¼ 3; thin-solid line, �aDt2max ¼ 20, �bDtmax ¼ 7; dashed line, �aDt2max ¼ 0,

�bDtmax ¼ 11. The CFL number is maintained at 1.0.

Table 1

Recommended forcing parameters

Scheme FE AB2 AB3 RK2a RK2b RK3a RK3b

�aDt2 16 8 4.36 32 16 100 72

�bDt 0 0 0 0 0 0 2.2

xnDt 1.0 0.71 0.15 1.41 1.0 2.5 2.1

aConstant time step.
bConstant CFL number.
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true only when the method is applied to three-dimensional flow and the third-order Runge–Kutta scheme is

used since the corresponding stability regime is wider than any other scheme as shown in Fig. 4.

Fig. 8 shows how quickly the forcing puts the velocity at the virtual surface point to rest. Even in two time

steps, the velocities at the virtual surface decreases below to 10% of the original values. Up to 10 time steps,

the influence of the forcing is local. It takes a longer time for the effect of the forcing to propagate throughout
the flow field. It is observed that flow naturally evolves inside the box and gets weaker as time increases.

We also tested placing the forcing inside the box too. Saiki and Biringen [18] suggested the use of the

interior forcing to obtain a correct solution. We found that the solutions for the case with the boundary

forcing only and the case with the boundary and interior forcing are different near the virtual surface since

surrounding turbulence is chaotic as shown in Fig. 9. Physically the flow outside the box is independent of

the flow inside, but the global nature of the expansion functions used in the simulation causes an interaction

between them. However, a few grids away from the virtual boundary, the two cases are almost identical.

This suggests that it is not necessary to apply the forcing inside the virtual boundaries in turbulent flows.
However, in laminar flows the interior forcing was necessary to get a correct solution since the viscous effect

is large. A test for laminar flow is presented in the following section. From the viewpoint of the mass

conservation, the case with the interior forcing does not provide an improved result. Investigation of the

residual velocity at the surface reveals that the l2-norm error remains at the same level regardless of the use

of the interior forcing.

Fig. 7. l2-norm error of the virtual surface velocity in the streamwise direction normalized by the initial value for three CFL numbers:

thick-solid line, CFL¼ 0.25; thin-solid line, CFL¼ 0.5; dashed line, CFL¼ 1.0. �aDt2max ¼ 45, �bDtmax ¼ 1 in all cases.
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Fig. 8. Velocity vector plots in the x–y plane near the box mounted on the bottom wall at (a) 0, (b) 2, (c) 5, (d) 10, and (e) 100 time steps

since the surface forcing is turned on. �aDt2max ¼ 40, �bDtmax ¼ 4.
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Fig. 9. Velocity vector plots in the x–y plane near the box mounted on the bottom wall at (a) 0, (b) 2, (c) 5, (d) 10, and (e) 100 time steps

since the surface and interior forcing is turned on. �aDt2max ¼ 40, �bDtmax ¼ 4.
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4.2. Startup flow around a cylinder

For a further validation of the stability characteristics presented in Section 3 and Fig. 4, we carried out a

simulation of the same cylinder startup problem as the one given in Goldstein et al. [5]. For this problem,

experimental data was provided by Bouard and Coutanceau [2]. Our computational domain is [2,2] in two

dimensions and a cylinder of diameter 0.44 is located at the center. Periodicity is assumed in the streamwise

direction and impermeability and constant streamwise velocity condition are imposed at the top and

bottom boundaries. Since we are interested in the initial behavior of flow around a cylinder which im-

pulsively starts, such a small computational domain is enough. Our spectral code uses 192 Fourier modes in

the streamwise direction and 257 Chebyshev modes in the normal direction. The time stepping algorithm
used is the third-order Runge–Kutta method. Ten thousand virtual boundary points are uniformly dis-

tributed along the boundary of the cylinder and extra 20 000 virtual points are located in the interior of the

cylinder. We also tested the case with boundary forcing alone and found that the interior forcing was

necessary to yield a solution closer to the experimental data. In our test in turbulent flow, the difference

between the cases with and without the interior forcing was negligible in the region a few grids further than

the virtual surface. This suggests that the viscous effect and global nature of the expansion function used

in our simulation cause such difference. Main differences between our simulation and Goldstein et al.�s

Fig. 10. l2-norm error of the virtual boundary velocity in the streamwise and normal directions normalized by the freestream velocity

in the cylinder problem: thick-solid line, streamwise velocity; dashed line, normal velocity. �aDt2max ¼ 30, �bDtmax ¼ 2.
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[5] simulation are that many virtual points were located along the surface and interior of the cylinder and

area-weighted forcing was used in our simulation while the virtual points were selected as the nearest grid

points to the cylinder and smoothing of the forcing was done in their simulation.

To simulate flow around an impulsively starting cylinder, we turned on the forcing at t ¼ 0 after velocity

was initialized as uniform flow. The Reynolds number (UD=m) is 550. Here, U and D are the free stream

velocity and the cylinder diameter. The maximum CFL number was maintained as 0.1 to quickly enforce

the no-slip condition at the surface of the cylinder. Throughout simulation, aDt2max ¼ �30 and bDtmax ¼ �2.

The l2-norm error of the virtual boundary velocity quickly decays as shown in Fig. 10. In less than
t	ð¼ tU=RÞ ¼ 0:05, the error drops below 1% of the initial value. Here, R is the cylinder radius. Since the

flow is laminar and slowly varies in time, the error constantly decreases with time. It should be noted that

our forcing parameter values are significantly greater than those used in Goldstein et al. [5] (aDt2 ¼ �0:002
or )0.02 and bDt ¼ �0:3).

Fig. 11. Streamline distribution around a cylinder: (a) at tU=R ¼ 2:0; (b) at tU=R ¼ 5:0.
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Streamline distributions near the cylinder at t	 ¼ 2:0 and 5.0 are illustrated in Fig. 11. Since we have not

done any smoothing of the forcing, weak oscillation in streamlines is observed near the surface of the

cylinder. The shape of the main wake vortex compares very well with experimental data [2]. The streamwise

and normal location of the center of the main vortex a and b and the aft stagnation point location L relative

to the rear end point of the cylinder are plotted in Fig. 12 with experimental data [2]. At early times the apt

stagnation point location was very accurately predicted by our simulation whereas the location of the

vortex core was not well predicted since the wake vortex is too small and too close to the surface of the

cylinder. At later times our simulation results deviate from the experimental data mainly due to the limited
computation domain used in our simulation. Compared to Goldstein et al.�s [5] simulation, our simulation

produced the results showing better agreement at the early times owing to the quick enforcement of the no-

slip condition at the surface of the cylinder by using much larger jaj and jbj.

4.3. Turbulent boundary layer over a rough wall

The rough-wall turbulent boundary flow has long been a research topic due to its consequences in real

engineering practice. While there have been many experimental studies, numerical investigation is rare

because of difficulty in representing a rough wall in numerical simulations. Typical features of turbulent

boundary over a rough wall, the suppression of viscous sublayer and the downward shift of the logarithmic

velocity profile, have been observed in many experiments [1,9,10,20]. Despite the recent popular use of

direct numerical simulation, the accurate representation of a rough wall in numerical simulation is still

Fig. 12. Time variation of the closed wake length and the position of the main eddy center normalized by the cylinder diameter for

Re ¼ 550. Present simulation results: thick solid line, L=D; thin solid line, a=D; dashed line, b=D. Experimental results for Re ¼ 550,

Bouard and Coutanceau (1980): �, L=D: �, a=D; M, b=D.
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difficult. In an effort to resolve this, a roughness element model has been proposed in a direct numerical

simulation of channel flow by Miyake et al. [15] where the effect of a rough wall is represented by a line

force opposing local velocity with an empirical drag coefficient. They also considered two-dimensional ribs

of square cross-section periodically located normal to flow direction by applying a virtual boundary forcing

technique. However, their approach is two dimensional and thus the rough-wall representation is not
complete. On the other hand, Cherukat et al. [3] carried out direct numerical simulation of turbulent flow

over a sinusoidal wavy surface using a spectral element technique, which is also a two-dimensional rep-

resentation. General three-dimensional rough wall has never been considered in numerical simulation. The

virtual boundary forcing method appears to be an ideal tool for a simulation of turbulent boundary layer

over any type of roughness element.

Fully developed turbulent channel flow is considered as a base flow. The following type of rough bottom

wall in the channel is represented using the virtual forcing in our simulations. The top wall remains smooth.

yðx; zÞ
h

¼ max 0;

 
� 0:01þ 1

28
k
h

�
þ 0:01

�
cos

2pnxx
lx

� �
cos

2pnzz
lz

� ��
þ 1

�8
!
; ð69Þ

where k is the height of the roughness element. lx and lz are the size of the wall and nx ¼ nz ¼ 8. The

corresponding surface height distribution is illustrated in Fig. 13 where the height is exaggerated. It is not

completely irregular, but it is expected that the full roughness effect is well represented. The computational
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Fig. 14. Mean streamwise velocity profiles for various roughness heights (a) in the regular scale and (b) in the log scale. kþ ¼ 0, 6.58,

10.68, 15.80, 20.95, 27.14. The log profiles, uþ ¼ 1
j log y

þ þ B� DBþ, are drawn for comparison.
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domain is ð4p; 2; 4p=3Þh in the streamwise, the wall-normal and the spanwise directions, respectively. The

base flow with smooth walls from which the rough-wall enforcing starts has Res ¼ 150. The computational

resolution is maintained at 96� 129� 96 on the extended grid although with this resolution the rough-wall

surface is not represented in detail. What we are focusing on is not the accuracy in representing the rough

wall but the feasibility of the virtual boundary method in such applications. Fully resolved simulations are

postponed for now. Cases considered in our study are summarized in Table 2. Res in the table is based on

the wall-shear velocity of the rough wall obtained from the balance between the mean pressure gradient and

the shear stresses of both walls, therefore, including the form drag due to the roughness elements. The same
spectral code was used here as in the case of the previous sections; therefore, the forcing was integrated

using the third-order Runge–Kutta scheme. The maximum CFL number is 1.0 and �aDt2max ¼ 50;
�bDtmax ¼ 5 for all cases considered.

Mean streamwise velocity profiles for various roughness heights are shown in Fig. 14 compared with the

smooth-wall case. With the increase of the roughness height, the gradual downward shifting of the loga-

rithmic velocity profile are observed, but the slope tends to increase. This is partly due to a low Reynolds

number since the log region is too narrow for the shifted log profile to be pronounced well. For the same

reason, we did not increase the roughness height further than kþ ¼ 30. For a fully rough-wall simulation, a
simulation of much higher Reynolds number channel flow is necessary. The amount of the downward shift,

DBþ, defined as follows is listed in Table 2:

uþ ¼ 1

j
log yþ þ B� DBþ; ð70Þ

with j ¼ 0:4 and B ¼ 5:5. yþ is defined as

yþ � ðy � y0Þus

m
; ð71Þ

where y is the distance from the wall and y0 is the location of the virtual origin. y0 is determined such that

the slope of the velocity in the log region is adjusted to 1=j and is listed in Table 2. Since the roughness

Fig. 15. Shear stress distribution (Case 2), normalized by the friction velocity of the rough wall.

582 C. Lee / Journal of Computational Physics 184 (2003) 559–591



heights considered are in the range of transitional roughness regime, the scaling relation of DBþ for large kþ

was not observed. However, the amount of DBþ is in the correct range for transitional roughness regime

suggested by experiments [22].

Shear stress distributions for Case 2 are shown in Fig. 15. The viscous stress and the Reynolds stress are

normalized by jswallj=q of the rough wall. The wall-shear stress includes not only the viscous stress but also

the form drag due to the roughness elements. Contribution to the total shear stress from this form drag is

localized only below the tip of the roughness element as shown in Fig. 15. This contribution is 70–90% to

the total wall-shear stress in our cases as listed in the last column of Table 2.
Fig. 16 shows a vector plot of ðv;wÞ with contours of the streamwise velocity in a selected y–z plane. We

intentionally chose this plane such that it shows the maximum height of the roughness element distribution.

From the distribution of contours near a roughness element, it can be seen that the no-slip condition is not

perfectly satisfied at the surface of the roughness element. However, considering the resolution used (Fig. 16

shows the computational mesh points where the vectors start), the representation of the rough wall is

relatively good. Although we have not shown here, a very weak flow is formed inside the roughness

9a4
9b4

Fig. 16. (a) Instantaneous flow field in a sSoplane. (b) Close-up view. Iso-contours of the streamwise velocity are drawn together.
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elements since we have not applied forcing there. A test with the interior forcing hardly changed the results.

It can be observed that near the tips of the roughness elements high-shear regions are newly formed.

Detailed statistics and the mechanism of the rough-wall turbulence obtained using fully resolved roughness

elements will be reported elsewhere.

5. Conclusion

We have investigated the stability characteristics of the virtual boundary method proposed by Goldstein

et al. [5] and later modified by Saiki and Biringen [18]. By detailed analysis in three dimensions, we found

that the linear interpolation of the virtual boundary velocity and the subsequent spreading of the virtual

forcing relax the time-step limit for stability up to four times. A variety of time-advancing schemes for the

integration of the forcing have been examined for stability. Compared to the Adams–Bashforth schemes of

the second/third order, the family of Runge–Kutta scheme possesses much wider stable region in the

forcing gain space. By investigating the frequency of the resulting dynamical system, we were able to

propose the optimum values of the forcing gains for each temporal scheme. Specially, when the third-order
Runge–Kutta scheme is adopted, the virtual boundary method performs properly with order-one CFL

number. Therefore, it was possible to apply the virtual boundary method to a direct numerical simulation

of three-dimensional turbulent flows containing very short-timescale motion. However, it should be re-

minded that our stability analysis is based on the assumption that the virtual boundary points are densely

distributed.

For the evaluation of the virtual boundary method, two kinds of turbulent flows and a two-dimensional

laminar flow are considered: three-dimensional flow arising from a surface-mounted box; the flow around

an impulsively starting cylinder; the rough-wall turbulent boundary layer flow. In the first example, the
stability region in the forcing gain space obtained from stability analysis was confirmed with an excellent

agreement. Also, the virtual boundary forcing was shown to work fast enough to response to the evolving

turbulence. In the simulation of the startup flow around a cylinder, the virtual boundary method was

applied with much larger forcing gains than the previously reported values. The results was in good

agreement with the known experimental data. In the third example, for the first time, the method was

applied to a simulation of turbulent flow over a rough wall without modeling. Typical characteristics of

rough-wall turbulence, the downshift of the log profile of mean velocity was correctly simulated. Although

we claim that the virtual boundary method was applied to two turbulent flows, we admit that both flows are
weakly turbulent in the region where the forcing is applied, i.e., near the wall. However, we expect that the

virtual boundary method will perform equally well in more severe turbulent environments.

Although all the test cases were computed using a spectral method, the virtual boundary method and its

stability characteristics are easily extendible without modifications to other kinds of numerical method such

as finite-difference method or finite-volume method in calculating unsteady three-dimensional flows.

Finally, we need to mention about the computational overhead. The overhead is definitely linearly

proportional to the total number of virtual boundary points used. In our case with the computational mesh,

96� 129� 96 and 73792 virtual surface points, the overhead is about 12%, which is not so imposing.
We have not focused on the accuracy of the virtual boundary method. For better accuracy of the in-

terpolation, a higher-order interpolation scheme can be adopted. However, an improvement of the accu-

racy associated with spreading of the forcing is not so straightforward. It is still a challenging problem to

represent a delta-function like forcing in numerical simulations adopting the discrete mesh system. In a

finite-volume sense, it might be possible to formulate the jump conditions incorporating the forcing across

the virtual boundary [12,13]. Or, an adaptive grid method can be facilitated near the virtual boundary [17].

One drawback of the virtual boundary method is the fact that the mass conservation is not perfectly

satisfied in the region surrounded by the virtual surfaces. Placing the forcing in the interior as well as on the
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boundaries does not fix this problem. Although this problem does not seem to significantly influence the

solution, this issue should be resolved. It requires a further study. We are currently investigating on the

improvement of the accuracy of the virtual boundary method.
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Appendix A. Derivation of the reduced system in three dimensions

We present in this section the derivation of reduced system (Eq. (32)) in three dimensions. Velocity at the

kth virtual boundary point is

UkðtÞ ¼ ð1� gx;kÞð1� gy;kÞð1� gz;kÞu1ðtÞ þ gx;kð1� gy;kÞð1� gzz; kÞu2ðtÞ

þ ð1� gx;kÞgy;kð1� gz;kÞu3ðtÞ þ gx;kgy;kð1� gz;kÞu4ðtÞ þ ð1� g F



f8ðtÞ ¼
1

Ns

XNs

k

gx;kgy;kgz;kFkðtÞ; ðA:9Þ

where fj denotes the forcing at the mesh points. Rearrangement for the mesh velocities yields the following

dynamical system,

du1ðtÞ
dt

du2ðtÞ
dt

du3ðtÞ
dt

du4ðtÞ
dt

du5ðtÞ
dt

du6ðtÞ
dt

du7ðtÞ
dt

du8ðtÞ
dt

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼

p1 p2 p3 p4 p5 p6 p7 p8
p2 p9 p4 p10 p6 p11 p8 p12
p3 p4 p13 p14 p7 p8 p15 p16
p4 p10 p14 p17 p8 p12 p16 p18
p5 p6 p7 p8 p19 p20 p21 p22
p6 p11 p8 p12 p20 p23 p22 p24
p7 p8 p15 p16 p21 p22 p25 p26
p8 p12 p16 p18 p22 p24 p26 p27

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

a
R t u1ðt0Þdt0 þ bu1ðtÞ

a
R t u2ðt0Þdt0 þ bu2ðtÞ

a
R t u3ðt0Þdt0 þ bu3ðtÞ

a
R t u4ðt0Þdt0 þ bu4ðtÞ

a
R t u5ðt0Þdt0 þ bu5ðtÞ

a
R t u6ðt0Þdt0 þ bu6ðtÞ

a
R t u7ðt0Þdt0 þ bu7ðtÞ

a
R t u8ðt0Þdt0 þ bu8ðtÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

; ðA:10Þ

where

p1 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2ð1� gy;kÞ

2ð1� gz;kÞ
2
; ðA:11Þ

p2 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞð1� gy;kÞ
2ð1� gz;kÞ

2
; ðA:12Þ

p3 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2gy;kð1� gy;kÞð1� gz;kÞ

2
; ðA:13Þ

p4 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞgy;kð1� gy;kÞð1� gz;kÞ
2
; ðA:14Þ

p5 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2ð1� gy;kÞ

2gz;kð1� gz;kÞ; ðA:15Þ

p6 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞð1� gy;kÞ
2gz;kð1� gz;kÞ; ðA:16Þ

p7 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2gy;kð1� gy;kÞgz;kð1� gz;kÞ; ðA:17Þ

p8 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞgy;kð1� gy;kÞgz;kð1� gz;kÞ; ðA:18Þ
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p9 ¼
1

Ns

XNs

k

g2
x;kð1� gy;kÞ

2ð1� gz;kÞ
2
; ðA:19Þ

p10 ¼
1

Ns

XNs

k

g2
x;kgy;kð1� gy;kÞð1� gz;kÞ

2
; ðA:20Þ

p11 ¼
1

Ns

XNs

k

g2
x;kð1� gy;kÞ

2gz;kð1� gz;kÞ; ðA:21Þ

p12 ¼
1

Ns

XNs

k

g2
x;kgy;kð1� gy;kÞgz;kð1� gz;kÞ; ðA:22Þ

p13 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2g2

y;kð1� gz;kÞ
2
; ðA:23Þ

p14 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞg2
y;kð1� gz;kÞ

2
; ðA:24Þ

p15 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2g2

y;kgz;kð1� gz;kÞ; ðA:25Þ

p16 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞg2
y;kgz;kð1� gz;kÞ; ðA:26Þ

p17 ¼
1

Ns

XNs

k

g2
x;kg

2
y;kð1� gz;kÞ

2
; ðA:27Þ

p18 ¼
1

Ns

XNs

k

g2
x;kg

2
y;kgz;kð1� gz;kÞ; ðA:28Þ

p19 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2ð1� gy;kÞ

2g2
z;k; ðA:29Þ

p20 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞð1� gy;kÞ
2g2

z;k; ðA:30Þ

p21 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2gy;kð1� gy;kÞg2

z;k; ðA:31Þ
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p22 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞgy;kð1� gy;kÞg2
z;k; ðA:32Þ

p23 ¼
1

Ns

XNs

k

g2
x;kð1� gy;kÞ

2g2
z;k; ðA:33Þ

p24 ¼
1

Ns

XNs

k

g2
x;kgy;kð1� gy;kÞg2

z;k; ðA:34Þ

p25 ¼
1

Ns

XNs

k

ð1� gx;kÞ
2g2

y;kg
2
z;k; ðA:35Þ

p26 ¼
1

Ns

XNs

k

gx;kð1� gx;kÞg2
y;kg

2
z;k; ðA:36Þ

p27 ¼
1

Ns

XNs

k

g2
x;kg

2
y;kg

2
z;k: ðA:37Þ

Now we let gx;k ! 0 for all k for the consideration of the worst case. Then, p2 ¼ p4 ¼ p6 ¼ p8 ¼ p9 ¼
p10 ¼ p11 ¼ p12 ¼ p14 ¼ p16 ¼ p17 ¼ p18 ¼ p20 ¼ p22 ¼ p23 ¼ p24 ¼ p26 ¼ p27 ¼ 0 and p1, p3, p5, p7, p13, p15, p19,
p21, p25 can be well approximated by integrals,

p1 ’
Z 1

0

Z 1

0

ð1� gyÞ
2ð1� gzÞ

2
dgy dgz ¼

1

9
; ðA:38Þ

p3 ’
Z 1

0

Z 1

0

gyð1� gyÞð1� gzÞ
2
dgy dgz ¼

1

18
; ðA:39Þ

p5 ’
Z 1

0

Z 1

0

ð1� gyÞ
2gzð1� gzÞdgy dgz ¼

1

18
; ðA:40Þ

p7 ’
Z 1

0

Z 1

0

gyð1� gyÞgzð1� gzÞdgy dgz ¼
1

36
; ðA:41Þ

p13 ’
Z 1

0

Z 1

0

g2
yð1� gzÞ

2
dgy dgz ¼

1

9
; ðA:42Þ

p15 ’
Z 1

0

Z 1

0

g2
ygzð1� gzÞdgy dgz ¼

1

18
; ðA:43Þ

p19 ’
Z 1

0

Z 1

0

ð1� gyÞ
2g2

z dgy dgz ¼
1

9
; ðA:44Þ
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p21 ’
Z 1

0

Z 1

0

gyð1� gyÞg2
z dgy dgz ¼

1

18
; ðA:45Þ

p25 ’
Z 1

0

Z 1

0

g2
yg

2
z dgy dgz ¼

1

9
: ðA:46Þ

The system (Eq. (A.10)) then reduces to Eq. (32).

Appendix B. Stability analysis for the third-order Runge–Kutta scheme

For the third-order low-storage Runge–Kutta scheme, the discretized equations for the three substeps

are

unþ1=3 � un ¼
8

15

a0

Dt

Z tnþ1=3

0

uðt0Þdt0
�

þ b0un

�
; ðB:1Þ

unþ2=3 � unþ1=3 ¼
5

12

a0

Dt

Z tnþ2=3

0

uðt0Þdt0
�

þ b0unþ1=3

�
� 17

60

a0

Dt

Z tnþ1=3

0

uðt0Þdt0
�

þ b0un

�
; ðB:2Þ

unþ1 � unþ2=3 ¼
3

4

a0

Dt

Z tnþ1

0

uðt0Þdt0
�

þ b0unþ2=3

�
� 5

12

a0

Dt

Z tnþ2=3

0

uðt0Þdt0
�

þ b0unþ1=3

�
; ðB:3Þ

where unþ1=3 and unþ2=3 denote function values at the first and second substeps, respectively.

tnþ1=3 ¼ tn þ 8
15
Dt, tnþ2=3 ¼ tn þ 2

3
Dt. Subtracting the same equations at the previous time step from the above

equations yields

unþ1=3 � un�2=3 � un þ un�1 ¼
8

15
a0I1
�

þ b0ðun � un�1Þ
�
; ðB:4Þ

unþ2=3 � un�1=3 � unþ1=3 þ un�2=3 ¼
5

12
a0I2
�

þ b0ðunþ1=3 � un�2=3Þ
�
� 17

60
a0I1
�

þ b0ðun � un�1Þ
�
; ðB:5Þ

unþ1 � un � unþ2=3 þ un�1=3 ¼
3

4
a0I3
�

þ b0ðunþ2=3 � un�1=3Þ
�
� 5

12
a0I2
�

þ b0ðunþ1=3 � un�2=3Þ
�
; ðB:6Þ

Here, integrals can be calculated as follows:

I1 ¼
1

Dt

Z tnþ1=3

tn�2=3

uðt0Þdt0 ¼ 2

15
un�2=3

�
þ 1

3
un�1=3 þ

8

15
un

�
; ðB:7Þ

I2 ¼
1

Dt

Z tnþ2=3

tn�1=3

uðt0Þdt0 ¼ 1

3
un�1=3

�
þ 8

15
un þ

2

15
unþ1=3

�
; ðB:8Þ

I3 ¼
1

Dt

Z tnþ1

tn

uðt0Þdt0 ¼ 8

15
un

�
þ 2

15
unþ1=3 þ

1

3
unþ2=3

�
: ðB:9Þ
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Substituting un ¼ rn, unþ1=3 ¼ prn, unþ2=3 ¼ qrn into Eqs. (B.4)–(B.6) and rearranging yield

ðp � 1Þðr � 1Þ ¼ 8

15
a0 2

15
p

�
þ 1

3
qþ 8

15
r
�
þ 8

15
b0ðr � 1Þ; ðB:10Þ

ðq� pÞðr � 1Þ ¼ 5

12
a0 1

3
q

�
þ 8

15
r þ 2

15
pr
�
þ 5

12
b0pðr � 1Þ � 17

60
a0 2

15
p

�
þ 1

3
qþ 8

15
r
�
� 17

60
b0ðr � 1Þ;

ðB:11Þ

ðr � qÞðr � 1Þ ¼ 3

4
a0 8

15
r

�
þ 2

15
pr þ 1

3
qr
�
þ 3

4
b0qðr � 1Þ � 5

12
a0 1

3
q

�
þ 8

15
r þ 2

15
pr
�
� 5

12
b0pðr � 1Þ:

ðB:12Þ

Using the condition that absðrÞ6 1, we can obtain the stability condition. We utilizedMathematica to get r
which is generally complex and enforced jrj ¼ 1 to obtain a relation between a and b. The neutral lines

drawn in Fig. 4 are combination of the following curves.

a0 ¼ 3

160

�
� 917� 330b0 � ð120889þ 245220b0 � 11100b02Þ1=2

�
ðB:13Þ

and

a0 ¼ � 1

480
ð5927þ 1980b0Þ þ 1

480c
ð8820529þ 9769320b0 þ 680400b02Þ þ c

480
ðB:14Þ

with

c ¼
�
� 30300346583:� 36710603460b0 � 14206460400b02 � 2805192000b03 þ 3600

ffiffiffiffiffiffi
3d

p �1=3
ðB:15Þ

and

d ¼ 5963440614876:� 1428035711796b0 � 12235153563481b02 � 1828981759860b03

þ 5162616348300b04 þ 1701022356000b05 þ 194293080000b06: ðB:16Þ
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